Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.19.21262296

ABSTRACT

Whole-genome sequencing of viral isolates is critical for informing transmission patterns and ongoing evolution of pathogens, especially during a pandemic. However, when genomes have low variability in the early stages of a pandemic, the impact of technical and/or sequencing errors increases. We quantitatively assessed inter-laboratory differences in consensus genome assemblies of 72 matched SARS-CoV-2-positive specimens sequenced at different laboratories in Sydney, Australia. Raw sequence data were assembled using two different bioinformatics pipelines in parallel, and resulting consensus genomes were compared to detect laboratory-specific differences. Matched genome sequences were predominantly concordant, with a median pairwise identity of 99.997%. Identified differences were predominantly driven by ambiguous site content. Ignoring these produced differences in only 2.3% (5/216) of pairwise comparisons, each differing by a single nucleotide. Matched samples were assigned the same Pango lineage in 98.2% (212/216) of pairwise comparisons, and were mostly assigned to the same phylogenetic clade. However, epidemiological inference based only on single nucleotide variant distances may lead to significant differences in the number of defined clusters if variant allele frequency thresholds for consensus genome generation differ between laboratories. These results underscore the need for a unified, best-practices approach to bioinformatics between laboratories working on a common outbreak problem.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.28.446065

ABSTRACT

A recent study proposed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we applied deep (>50x) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2, and did not find any evidence of the virus existing as DNA. By examining ONT data from separate HEK293T cultivars, we resolved the complete sequences of 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV) positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions via ONT sequencing. That we found no evidence of SARS-CoV-2 integration suggests such events in vivo are highly unlikely to drive later oncogenesis or explain post-recovery detection of the virus.


Subject(s)
Coronavirus Infections , Hepatitis B , Carcinoma, Hepatocellular
3.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-105996.v1

ABSTRACT

Accumulating evidence supports the high prevalence of co-infections among Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) patients, and their potential to worsen the clinical outcome of COVID-19. However, there are few data on Southern Hemisphere populations, and most studies to date have investigated a narrow spectrum of viruses using targeted qRT-PCR. Here we assessed respiratory viral co-infections among SARS-CoV-2 patients in Australia, through respiratory virome characterization. Nasopharyngeal swabs of 92 SARS-CoV-2-positive cases were sequenced using pan-viral hybrid-capture and the Twist Respiratory Virus Panel. In total, 8% of cases were co-infected, with rhinovirus (6%) or influenzavirus (2%). Twist capture also achieved near-complete sequencing (>90% coverage, >10-fold depth) of the SARS-CoV-2 genome in 95% of specimens with Ct<30. Our results highlight the importance of assessing all pathogens in symptomatic patients, and the dual-functionality of Twist hybrid-capture, for SARS-CoV-2 whole-genome sequencing without amplicon generation and the simultaneous identification of viral co-infections with ease.


Subject(s)
COVID-19 , Coinfection , Severe Acute Respiratory Syndrome
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.04.236893

ABSTRACT

Viral whole-genome sequencing (WGS) provides critical insight into the transmission and evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Long-read sequencing devices from Oxford Nanopore Technologies (ONT) promise significant improvements in turnaround time, portability and cost, compared to established short-read sequencing platforms for viral WGS (e.g., Illumina). However, adoption of ONT sequencing for SARS-CoV-2 surveillance has been limited due to common concerns around sequencing accuracy. To address this, we performed viral WGS with ONT and Illumina platforms on 157 matched SARS-CoV-2-positive patient specimens and synthetic RNA controls, enabling rigorous evaluation of analytical performance. Despite the elevated error rates observed in ONT sequencing reads, highly accurate consensus-level sequence determination was achieved, with single nucleotide variants (SNVs) detected at >99% sensitivity and >99% precision above a minimum ~60-fold coverage depth, thereby ensuring suitability for SARS-CoV-2 genome analysis. ONT sequencing also identified a surprising diversity of structural variation within SARS-CoV-2 specimens that were supported by evidence from short-read sequencing on matched samples. However, ONT sequencing failed to accurately detect short indels and variants at low read-count frequencies. This systematic evaluation of analytical performance for SARS-CoV-2 WGS will facilitate widespread adoption of ONT sequencing within local, national and international COVID-19 public health initiatives.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.09.143412

ABSTRACT

DNA synthesis in vitro has enabled the rapid production of reference standards. These are used as controls, and allow measurement and improvement of the accuracy and quality of diagnostic tests. Current reference standards typically represent target genetic material, and act only as positive controls to assess test sensitivity. However, negative controls are also required to evaluate test specificity. Using a pair of chimeric A/B RNA standards, this allowed incorporation of positive and negative controls into diagnostic testing for the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The chimeric standards constituted target regions for RT-PCR primer/probe sets that are joined in tandem across two separate synthetic molecules. Accordingly, a target region that is present in standard A provides a positive control, whilst being absent in standard B, thereby providing a negative control. This design enables cross-validation of positive and negative controls between the paired standards in the same reaction, with identical conditions. This enables control and test failures to be distinguished, increasing confidence in the accuracy of results. The chimeric A/B standards were assessed using the US Centers for Disease Control real-time RT-PCR protocol, and showed results congruent with other commercial controls in detecting SARS CoV-2 in patient samples. This chimeric reference standard design approach offers extensive flexibility, allowing representation of diverse genetic features and distantly related sequences, even from different organisms.

SELECTION OF CITATIONS
SEARCH DETAIL